Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Fluid flow influences ultrasound-assisted endothelial membrane permeabilization and calcium flux

Authors: Memari EHui FYusefi HHelfield B


Affiliations


Description

The local fluid dynamics experienced by circulating microbubbles vary across different anatomical sites, which can influence ultrasound-mediated therapeutic delivery efficacy. This study aimed to elucidate the effect of fluid flow rate in combination with repeated short-pulse ultrasound on microbubble-mediated endothelial cell permeabilization. Here, a seeded monolayer of human umbilical (HUVEC) or brain endothelial cells (HBEC-5i) was co-perfused with a solution of microbubbles and propidium iodide (PI) at either a flow rate of 5 or 30 ml/min. Using an acoustically coupled inverted microscope, cells were exposed to 1 MHz ultrasound with 20-cycle bursts, 1 ms PRI, and 2 s duration at a peak negative pressure of 305 kPa to assess the role of flow rate on ultrasound-stimulated endothelial cell permeability, as well as Ca2+ modulation. In addition, the effect of inter-pulse delays (?t = 1s) on the resulting endothelial permeability was investigated. Our results demonstrate that under an identical acoustic stimulus, fast-flowing microbubbles resulted in a statistically significant increase in cell membrane permeability, at least by 2.3-fold, for both endothelial cells. Likewise, there was a substantial difference in intracellular Ca2+ levels between the two examined flow rates. In addition, multiple short pulses rather than a single pulse ultrasound, with an equal number of bursts, significantly elevated endothelial cell permeabilization, at least by 1.4-fold, in response to ultrasound-stimulated microbubbles. This study provides insights into the design of optimal, application-dependent pulsing schemes to improve the effectiveness of ultrasound-mediated local therapeutic delivery.


Keywords: CavitationDrug deliveryMicrobubblesSonoporation


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/37150403/

DOI: 10.1016/j.jconrel.2023.05.004