Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli

Authors: Mäkelä MRDiFalco MMcDonnell ENguyen TTMWiebenga AHildén KPeng MGrigoriev IVTsang Ade Vries RP


Affiliations

1 Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
2 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B1R6, Canada.
3 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.
4 Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
5 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
6 Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94598, USA.

Description

We classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse Aspergillus species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to the Aspergilli CAZyme families and subfamilies. Genome content analysis revealed that the numbers of CAZy genes per CAZy family related to plant biomass degradation follow closely the taxonomic distance between the species. On the other hand, growth analysis showed almost no correlation between the number of CAZyme genes and the efficiency in polysaccharide utilization. The exception is A. clavatus where a reduced number of pectinolytic enzymes can be correlated with poor growth on pectin. To gain detailed information on the enzymes used by Aspergilli to breakdown complex biomass, we conducted exoproteome analysis by mass spectrometry. These results showed that Aspergilli produce many different enzymes mixtures in the presence of sugar beet pulp and wheat bran. Despite the diverse enzyme mixtures produced, species of section Nigri, A. aculeatus, A. nidulans and A. terreus, produce mixtures of enzymes with activities that are capable of digesting all the major polysaccharides in the available substrates, suggesting that they are capable of degrading all the polysaccharides present simultaneously. For the other Aspergilli, typically the enzymes produced are targeted to a subset of polysaccharides present, suggesting that they can digest only a subset of polysaccharides at a given time.


Keywords: AspergillusCellulosePectinPlant biomass degradationSugar beet pulpWheat branXylanXyloglucan


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/30487660/

DOI: 10.1016/j.simyco.2018.09.001