Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls

Author(s): Derba-Maceluch M; Mitra M; Hedenström M; Liu X; Gandla ML; Barbut FR; Abreu IN; Donev EN; Urbancsok J; Moritz T; Jönsson LJ; Tsang A; Powlowski J; Master ER; Mellerowicz EJ;

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular ...

Article GUID: 36600379


Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity

Author(s): Venegas FA; Koutaniemi S; Langeveld SMJ; Bellemare A; Chong SL; Dilokpimol A; Lowden MJ; Hilden KS; Leyva-Illades JF; Mäkelä MR; My Pham TT; Peng M; Hancock MA; Zheng Y; Tsang A; Tenkanen M; Powlowski J; de Vries RP;

Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase family 16 (CE16) is one of the more recently discovered CAZy families, bu ...

Article GUID: 35405333


Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases

Author(s): Dilokpimol A; Verkerk B; Li X; Bellemare A; Lavallee M; Frommhagen M; Nørmølle Underlin E; Kabel MA; Powlowski J; Tsang A; de Vries RP;

Feruloyl esterases (FAEs) and acetyl xylan esterases (AXEs) are important enzymes for plant biomass degradation and are both present in Carbohydrate Esterase family 1 (CE1) of the Carbohydrate-Active enZymes database. In this study, ten novel fungal CE1 enzymes from different subfamilies were het ...

Article GUID: 35187647


Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs.

Author(s): Ribeiro GO; Gruninger RJ; Jones DR; Beauchemin KA; Yang WZ; Wang Y; Abbott DW; Tsang A; McAllister TA;

The objective of this study was to evaluate the effect of ammonia fiber expansion (AFEX)-treated wheat straw pellets and a recombinant fibrolytic enzyme on the rumen microbiome, rumen fermentation parameters, total tract diet digestibility, and performance of lambs. Eight rumen cannulated wethers ...

Article GUID: 32369600


The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor.

Author(s): Pereira EO, Tsang A, McAllister TA, Menassa R

Biotechnol Biofuels. 2013;6:111 Authors: Pereira EO, Tsang A, McAllister TA, Menassa R

Article GUID: 23915965


Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics.

Author(s): Basotra N, Joshi S, Satyanarayana T, Pati PK, Tsang A, Chadha BS

Int J Biol Macromol. 2018 Mar;108:185-192 Authors: Basotra N, Joshi S, Satyanarayana T, Pati PK, Tsang A, Chadha BS

Article GUID: 29174359


Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli

Author(s): Mäkelä MR; DiFalco M; McDonnell E; Nguyen TTM; Wiebenga A; Hildén K; Peng M; Grigoriev IV; Tsang A; de Vries RP;

We classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse Aspergillus species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to ...

Article GUID: 30487660


Thermostable xylanases from thermophilic fungi and bacteria: Current perspective.

Author(s): Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Bioresour Technol. 2019 Apr;277:195-203 Authors: Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Article GUID: 30679061


-   Page 1 / 1   -