Authors: Barone G, Buonomano A, Forzano C, Giuzio GF, Palombo A
In the last years, the Covid-19 outbreak raised great awareness about ventilation system performance in confined spaces. Specifically, the heating, ventilation, and air conditioning system design and operating parameters, such as air change per hour, air recirculation ratio, filtration device performance, and vents location, play a crucial role in reducing the spread of viruses, moulds, bacteria, and general pollutants. Concerning the transport sector, due to the impracticability of social distancing, and the relatively loose requirements of ventilation standards, the SARS-COV-19 outbreak brought a reduction of payload (up to 50%) for different carriers. Specifically, this has been particularly severe for the railway sector, where train coaches are typically characterized by relatively elevated occupancy and high recirculation ratios. In this framework, to improve the Indoor Air Quality and reduce the Covid-19 contagion risk in railway carriages, the present paper investigates the energy, economic and environmental feasibility of diverse ventilation strategies. To do so, a novel dynamic simulation tool for the complete dynamic performance investigation of trains was developed in an OpenStudio environment. To assess the Covid-19 contagion risk connected to the investigated scenarios, the Wells-Riley model has been adopted. To prove the proposed approach's capabilities and show the Covid-19 infection risk reduction potentially achievable by varying the adopted ventilation strategies, a suitable case study related to an existing medium-distance train operating in South/Central Italy is presented. The conducted numerical simulations return interesting results providing also useful design criteria.
Keywords: Covid-19; Dynamic simulation; Energy efficiency; HVAC system; Train;
PubMed: https://pubmed.ncbi.nlm.nih.gov/35754761/
DOI: 10.1016/j.energy.2022.124466