Authors: Devine S, Neumann C, Otto AR, Bolenz F, Reiter A, Eppinger B
Previous work suggests that lifespan developmental differences in cognitive control reflect maturational and aging-related changes in prefrontal cortex functioning. However, complementary explanations exist: It could be that children and older adults differ from younger adults in how they balance the effort of engaging in control against its potential benefits. Here we test whether the degree of cognitive effort expenditure depends on the opportunity cost of time (average reward rate per unit time): if the average reward rate is high, participants should withhold cognitive effort whereas if it is low, they should invest more. In Experiment 1, we examine this hypothesis in children, adolescents, younger, and older adults, by applying a reward rate manipulation in two cognitive control tasks: a modified Erikson Flanker and a task-switching paradigm. We found that young adults and adolescents reflexively withheld effort when the opportunity cost of time was high, whereas older adults and, to a lesser degree children, invested more resources to accumulate reward as quickly as possible. We tentatively interpret these results in terms of age- and task-specific differences in the processing of the opportunity cost of time. We qualify our findings in a second experiment in younger adults in which we address an alternative explanation of our results and show that the observed age differences in effort expenditure may not result from differences in task difficulty. To conclude, we think that our results present an interesting first step at relating opportunity costs to motivational processes across the lifespan. We frame the implications of further work in this area within a recent developmental model of resource-rationality, which points to developmental sweet spots in cognitive control.
Keywords: Cognitive control; Cognitive effort; Lifespan development; Opportunity costs;
PubMed: https://pubmed.ncbi.nlm.nih.gov/34384965/
DOI: 10.1016/j.cognition.2021.104863