Author(s): Zhao H; Karppi J; Mototsune O; Poshina D; Svartström J; Nguyen TTM; Vo TM; Tsang A; Master E; Tenkanen M;
Background: Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activi ...
Article GUID: 38539167
Author(s): Zhao H; Karppi J; Nguyen TTM; Bellemare A; Tsang A; Master E; Tenkanen M;
Background: The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically com ...
Article GUID: 36476312
Author(s): Marinovíc M; Di Falco M; Aguilar Pontes MV; Gorzsás A; Tsang A; de Vries RP; Mäkelä MR; Hildén K;
The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eig ...
Article GUID: 35892327
Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP
Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP
Article GUID: 32408196
Author(s): Daly P, Peng M, Di Falco M, Lipzen A, Wang M, Ng V, Grigoriev IV, Tsang A, Mäkelä MR, de Vries RP
Appl Environ Microbiol. 2019 Oct 04;: Authors: Daly P, Peng M, Di Falco M, Lipzen A, Wang M, Ng V, Grigoriev IV, Tsang A, Mäkelä MR, de Vries RP
Article GUID: 31585998
Author(s): Robert J Gruninger
Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in this process. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and unders ...
Article GUID: 28417377
Author(s): Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP
BMC Genomics. 2017 Nov 23;18(1):900 Authors: Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP
Article GUID: 29169319
Author(s): Badhan A; Ribeiro GO; Jones DR; Wang Y; Abbott DW; Di Falco M; Tsang A; McAllister TA;
Crude enzyme extracts typically contain a broad spectrum of enzyme activities, most of which are redundant to those naturally produced by the rumen microbiome. Identification of enzyme activities that are synergistic to those produced by the rumen microbiome could enable formulation of enzyme cocktails that improve fiber digestion in ruminants. Compared t ...
Article GUID: 29621684
Author(s): Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P, Abbott DW, Tsang A, McAllister T
Front Microbiol. 2018;9:1581 Authors: Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P, Abbott DW, Tsang A, McAllister T
Article GUID: 30061875
Author(s): Coconi Linares N, Di Falco M, Benoit-Gelber I, Gruben BS, Peng M, Tsang A, Mäkelä MR, de Vries RP
N Biotechnol. 2019 Jul 25;51:57-66 Authors: Coconi Linares N, Di Falco M, Benoit-Gelber I, Gruben BS, Peng M, Tsang A, Mäkelä MR, de Vries RP
Article GUID: 30797054
- Page 1 / 1 -