Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Identification of a Conserved Transcriptional Activator-Repressor Module Controlling the Expression of Genes Involved in Tannic Acid Degradation and Gallic Acid Utilization in Aspergillus niger

Author(s): Arentshorst M; Falco MD; Moisan MC; Reid ID; Spaapen TOM; van Dam J; Demirci E; Powlowski J; Punt PJ; Tsang A; Ram AFJ;

Tannic acid, a hydrolysable gallotannin present in plant tissues, consists of a central glucose molecule esterified with gallic acid molecules. Some microorganisms, including several Aspergillus species, can metabolize tannic acid by releasing gallic acid residues from tannic acid by secreting ta ...

Article GUID: 37744122


Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger

Author(s): Sgro M; Chow N; Olyaei F; Arentshorst M; Geoffrion N; Ram AFJ; Powlowski J; Tsang A;

Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on ß-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. Thes ...

Article GUID: 37399977


Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls

Author(s): Derba-Maceluch M; Mitra M; Hedenström M; Liu X; Gandla ML; Barbut FR; Abreu IN; Donev EN; Urbancsok J; Moritz T; Jönsson LJ; Tsang A; Powlowski J; Master ER; Mellerowicz EJ;

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular ...

Article GUID: 36600379


Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity

Author(s): Venegas FA; Koutaniemi S; Langeveld SMJ; Bellemare A; Chong SL; Dilokpimol A; Lowden MJ; Hilden KS; Leyva-Illades JF; Mäkelä MR; My Pham TT; Peng M; Hancock MA; Zheng Y; Tsang A; Tenkanen M; Powlowski J; de Vries RP;

Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase family 16 (CE16) is one of the more recently discovered CAZy families, bu ...

Article GUID: 35405333


Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases

Author(s): Dilokpimol A; Verkerk B; Li X; Bellemare A; Lavallee M; Frommhagen M; Nørmølle Underlin E; Kabel MA; Powlowski J; Tsang A; de Vries RP;

Feruloyl esterases (FAEs) and acetyl xylan esterases (AXEs) are important enzymes for plant biomass degradation and are both present in Carbohydrate Esterase family 1 (CE1) of the Carbohydrate-Active enZymes database. In this study, ten novel fungal CE1 enzymes from different subfamilies were het ...

Article GUID: 35187647


Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.

Author(s): Semana P, Powlowski J

Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as sole sources of carbon and energy. The genome of A. niger has been sequenced, and deduced amino acid s ...

Article GUID: 31540981


Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366


Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor.

Author(s): Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Appl Microbiol Biotechnol. 2007 May;75(2):337-46 Authors: Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Article GUID: 17333176


A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268


Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504


A molecular phylogeny of thermophilic fungi.

Author(s): Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Fungal Biol. 2012 Apr;116(4):489-502 Authors: Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Article GUID: 22483047


-   Page 1 / 2   >