Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology

Author(s): Hrtonova V; Nejedly P; Travnicek V; Cimbalnik J; Matouskova B; Pail M; Peter-Derex L; Grova C; Gotman J; Halamek J; Jurak P; Brazdil M; Klimes P; Frauscher B;

Introduction: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the consistent evaluation of automatic machine learnin ...

Article GUID: 39608298


EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy

Author(s): Afnan J; Cai Z; Lina JM; Abdallah C; Delaire E; Avigdor T; Ros V; Hedrich T; von Ellenrieder N; Kobayashi E; Frauscher B; Gotman J; Grova C;

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the ...

Article GUID: 38994740


A spatial perturbation framework to validate implantation of the epileptogenic zone

Author(s): Jaber K; Avigdor T; Mansilla D; Ho A; Thomas J; Abdallah C; Chabardes S; Hall J; Minotti L; Kahane P; Grova C; Gotman J; Frauscher B;

Stereo-electroencephalography (SEEG) is the gold standard to delineate surgical targets in focal drug-resistant epilepsy. SEEG uses electrodes placed directly into the brain to identify the seizure-onset zone (SOZ). However, its major constraint is limited brain coverage, potentially leading to m ...

Article GUID: 38897997


Targeted density electrode placement achieves high concordance with traditional high-density EEG for electrical source imaging in epilepsy

Author(s): Horrillo-Maysonnial A; Avigdor T; Abdallah C; Mansilla D; Thomas J; von Ellenrieder N; Royer J; Bernhardt B; Grova C; Gotman J; Frauscher B;

Objective: High-density (HD) electroencephalography (EEG) is increasingly used in presurgical epilepsy evaluation, but it is demanding in time and resources. To overcome these issues, we compared EEG source imaging (ESI) solutions with a targeted density and HD-EEG montage. Methods: HD-EEGs from ...

Article GUID: 37704552


Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas

Author(s): Afnan J; von Ellenrieder N; Lina JM; Pellegrino G; Arcara G; Cai Z; Hedrich T; Abdallah C; Khajehpour H; Frauscher B; Gotman J; Grova C;

Background: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical ...

Article GUID: 37149236


Clinical Yield of Electromagnetic Source Imaging and Hemodynamic Responses in Epilepsy: Validation With Intracerebral Data

Author(s): Abdallah C; Hedrich T; Koupparis A; Afnan J; Hall JA; Gotman J; Dubeau F; von Ellenrieder N; Frauscher B; Kobayashi E; Grova C;

Background and objectives: Accurate delineation of the seizure-onset zone (SOZ) in focal drug-resistant epilepsy often requires stereo-EEG (SEEG) recordings. Our aims were to propose a truly objective and quantitative comparison between EEG/magnetoencephalography (MEG) source imaging (EMSI), EEG/ ...

Article GUID: 35473762


Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment.

Author(s): Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C

Front Neurosci. 2014;8:419 Authors: Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C

Article GUID: 25565949


Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients.

Author(s): von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Mar;29(2):218-31 Authors: von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Article GUID: 26830767


SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Author(s): Lee K, Lina JM, Gotman J, Grova C

Neuroimage. 2016 07 01;134:434-449 Authors: Lee K, Lina JM, Gotman J, Grova C

Article GUID: 27046111


Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy.

Author(s): Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Neuroimage Clin. 2018;20:71-84 Authors: Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Article GUID: 30094158


Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis.

Author(s): Lee K, Khoo HM, Fourcade C, Gotman J, Grova C

Magn Reson Imaging. 2019 05;58:97-107 Authors: Lee K, Khoo HM, Fourcade C, Gotman J, Grova C

Article GUID: 30695721


-   Page 1 / 2   -