Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids.

Authors: Pyne MEKevvai KGrewal PSNarcross LChoi BBourgeois LDueber JEMartin VJJ


Affiliations

1 Department of Biology, Concordia University, Montréal, QC, Canada.
2 Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada.
3 Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
4 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
5 Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
6 Department of Biology, Concordia University, Montréal, QC, Canada. vincent.martin@concordia.ca.
7 Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada. vincent.martin@concordia.ca.

Description

A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids.

Nat Commun. 2020 Jul 03;11(1):3337

Authors: Pyne ME, Kevvai K, Grewal PS, Narcross L, Choi B, Bourgeois L, Dueber JE, Martin VJJ

Abstract

The tetrahydroisoquinoline (THIQ) moiety is a privileged substructure of many bioactive natural products and semi-synthetic analogs. Plants manufacture more than 3,000 THIQ alkaloids, including the opioids morphine and codeine. While microbial species have been engineered to synthesize a few compounds from the benzylisoquinoline alkaloid (BIA) family of THIQs, low product titers impede industrial viability and limit access to the full chemical space. Here we report a yeast THIQ platform by increasing production of the central BIA intermediate (S)-reticuline to 4.6?g?L-1, a 57,000-fold improvement over our first-generation strain. We show that gains in BIA output coincide with the formation of several substituted THIQs derived from amino acid catabolism. We use these insights to repurpose the Ehrlich pathway and synthesize an array of THIQ structures. This work provides a blueprint for building diverse alkaloid scaffolds and enables the targeted overproduction of thousands of THIQ products, including natural and semi-synthetic opioids.

PMID: 32620756 [PubMed - as supplied by publisher]


Links

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32620756?dopt=Abstract

DOI: 10.1038/s41467-020-17172-x