Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Developing endophytic Penicillium oxalicum as a source of lignocellulolytic enzymes for enhanced hydrolysis of biorefinery relevant pretreated rice straw

Author(s): Sharma G; Kaur B; Raheja Y; Kaur A; Singh V; Basotra N; Di Falco M; Tsang A; Chadha BS;

Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophyti ...

Article GUID: 39249151


Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide mono-oxygenases

Author(s): Raheja Y; Singh V; Kumar N; Agrawal D; Sharma G; Di Falco M; Tsang A; Chadha BS;

The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources ...

Article GUID: 39167166


Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation

Author(s): Mathieu Y; Raji O; Bellemare A; Di Falco M; Nguyen TTM; Viborg AH; Tsang A; Master E; Brumer H;

Background: Microbial lytic polysaccharide monooxygenases (LPMOs) cleave diverse biomass polysaccharides, including cellulose and hemicelluloses, by initial oxidation at C1 or C4 of glycan chains. Within the Carbohydrate-Active Enzymes (CAZy) classification, Auxiliary Activity Family 9 (AA9) comp ...

Article GUID: 37679837


Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora

Author(s): Marinovíc M; Di Falco M; Aguilar Pontes MV; Gorzsás A; Tsang A; de Vries RP; Mäkelä MR; Hildén K;

The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eig ...

Article GUID: 35892327


Lignocellulolytic enzymes from Aspergillus allahabadii for efficient bioconversion of rice straw into fermentable sugars and biogas

Author(s): Sharma G; Kaur B; Raheja Y; Agrawal D; Basotra N; Di Falco M; Tsang A; Singh Chadha B;

The study was aimed at developing lignocellulolytic strain capable of efficient hydrolysis of mild alkali deacetylated (MAD) rice straw. The valorisation of lignin rich black liquor obtained during pre-treatment of rice straw into biogas was also evaluated. Study reports highly proficient cellulolytic Aspergillus allahabadii strain harbouring a spectrum o ...

Article GUID: 35753566


Combination of system biology and classical approaches for developing biorefinery relevant lignocellulolytic Rasamsonia emersonii strain

Author(s): Raheja Y; Singh V; Kaur B; Basotra N; Di Falco M; Tsang A; Singh Chadha B;

The objective of this study was to develop thermophilic fungus Rasamsonia emersonii using integrated system biology tools (genomics, proteomics and transcriptional analysis) in combination with classical strain breeding approaches. Developed hyper cellulolytic mutant strain M36 showed endoglucanase (476.35 U/ml), ß-glucosidase (70.54 U/ml), cellobiohydrol ...

Article GUID: 35318142


The chimeric GaaR-XlnR transcription factor induces pectinolytic activities in the presence of D-xylose in Aspergillus niger

Author(s): Kun RS; Garrigues S; Di Falco M; Tsang A; de Vries RP;

Aspergillus niger is a filamentous fungus well known for its ability to produce a wide variety of pectinolytic enzymes, which have many applications in the industry. The transcriptional activator GaaR is induced by 2-keto-3-deoxy-L-galactonate, a compound derived from D-galacturonic acid, and plays a major role in the regulation of pectinolytic genes. The ...

Article GUID: 34236481


Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of minor components

Author(s): Kun RS; Garrigues S; Di Falco M; Tsang A; de Vries RP;

Fungi produce a wide range of enzymes that allow them to grow on diverse plant biomass. Wheat bran is a low-cost substrate with high potential for biotechnological applications. It mainly contains cellulose and (arabino)xylan, as well as starch, proteins, lipids and lignin to a lesser extent. In this study, we dissected the regulatory network governing wh ...

Article GUID: 34114741


Identification of a Novel Biosynthetic Gene Cluster in Aspergillus niger Using Comparative Genomics

Author(s): Evdokias G; Semper C; Mora-Ochomogo M; Di Falco M; Nguyen TTM; Savchenko A; Tsang A; Benoit-Gelber I;

Previously, DNA microarrays analysis showed that, in co-culture with Bacillus subtilis, a biosynthetic gene cluster anchored with a nonribosomal peptides synthetase of Aspergillus niger is downregulated. Based on phylogenetic and synteny analyses, we show here that this gene cluster, NRRL3_00036- ...

Article GUID: 34064722


Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Article GUID: 32408196


Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina.

Author(s): van Erven G, Kleijn AF, Patyshakuliyeva A, Di Falco M, Tsang A, de Vries RP, van Berkel WJH, Kabel MA

Biotechnol Biofuels. 2020;13:75 Authors: van Erven G, Kleijn AF, Patyshakuliyeva A, Di Falco M, Tsang A, de Vries RP, van Berkel WJH, Kabel MA

Article GUID: 32322305


-   Page 1 / 2   >