Reset filters

Search publications


Search by keyword
List by department / centre / faculty

No publications found.

 

Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings

Author(s): Guo J; Fan W; Amayri M; Bouguila N;

This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asy ...

Article GUID: 39662201


Unsupervised Mixture Models on the Edge for Smart Energy Consumption Segmentation with Feature Saliency

Author(s): Al-Bazzaz H; Azam M; Amayri M; Bouguila N;

Smart meter datasets have recently transitioned from monthly intervals to one-second granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a fundamental data mining technique, is extensively applied to discern unique energy consumption patterns. However, the advent of high-resolution smart meter data brings forth f ...

Article GUID: 37837127


Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications

Author(s): Luo Z; Amayri M; Fan W; Bouguila N;

Cross-collection topic models extend previous single-collection topic models, such as Latent Dirichlet Allocation (LDA), to multiple collections. The purpose of cross-collection topic modeling is to model document-topic representations and reveal similarities between each topic and differences among groups. However, the restriction of Dirichlet prior and ...

Article GUID: 36685642


Weakly Supervised Occupancy Prediction Using Training Data Collected via Interactive Learning

Author(s): Bouhamed O; Amayri M; Bouguila N;

Accurate and timely occupancy prediction has the potential to improve the efficiency of energy management systems in smart buildings. Occupancy prediction heavily depends on historical occupancy-related data collected from various sensor sources. Unfortunately, a major problem in that context is the difficulty to collect training data. This situation insp ...

Article GUID: 35590880


-   Page 1 / 1   -