Search publications

Reset filters Search by keyword

No publications found.

 

Thermotolerance in S. cerevisiae as a model to study extracellular vesicle biology

Authors: Logan CJStaton CCOliver JTBouffard JKazmirchuk TDDMagi MBrett CL


Affiliations

1 Department of Biology, Concordia University, Montreal, Quebec, Canada.

Description

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Keywords: ALIXBro1Saccharomyces cerevisiaeSsa2exosomeextracellular vesicleheat shock proteinheat stressthermotolerance


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/38711329/

DOI: 10.1002/jev2.12431