Search publications

Reset filters Search by keyword

No publications found.

 

Optogenetic stimulation of infralimbic cortex projections to the paraventricular thalamus attenuates context-induced renewal

Authors: Brown AChaudhri N


Affiliations

1 Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada.

Description

Contexts associated with prior reinforcement can renew extinguished conditioned responding. The prelimbic (PL) and infralimbic (IL) cortices are thought to mediate the expression and suppression of conditioned responding, respectively. Evidence suggests that PL inputs to the paraventricular nucleus of the thalamus (PVT) drive the expression of cue-induced reinstatement of drug seeking and that IL inputs to the PVT mediate fear extinction retrieval. However, the role of these projections in renewal of appetitive Pavlovian conditioned responding is unknown. We trained male and female Long-Evans rats to associate a conditioned stimulus (CS; 10 s white noise) with delivery of a 10% sucrose unconditioned stimulus (US; .2 ml/CS) to a fluid port in a distinct context (Context A). We then extinguished responding by presenting the CS without the US in a different context (Context B). At test, rats were returned to Context A, and optogenetic stimulation was delivered to either the IL-to-PVT or PL-to-PVT pathway during CS presentations. Optically stimulating the IL-to-PVT, but not the PL-to-PVT pathway, attenuated ABA renewal of CS port entries, and this effect was similar in males and females. Further, rats self-administered optical stimulation of the IL-to-PVT but not the PL-to-PVT pathway suggesting that activation of the IL-to-PVT pathway is reinforcing. The effectiveness of optical stimulation parameters to activate neurons in the IL, PL and PVT was confirmed using Fos immunohistochemistry. These findings provide evidence for novel neural mechanisms in renewal of responding to a sucrose-predictive CS, as well as more generally in contextual processing and appetitive associative learning.


Keywords: Pavlovian conditioningextinctionrewardsucroseventromedial prefrontal cortex


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/36373226/

DOI: 10.1111/ejn.15862