Search publications

Reset filters Search by keyword

No publications found.

 

Weakly Supervised Occupancy Prediction Using Training Data Collected via Interactive Learning

Authors: Bouhamed OAmayri MBouguila N


Affiliations

1 Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC H3G1T7, Canada.
2 G-SCOP Lab, Grenoble Institute of Technology, 38031 Grenoble, France.

Description

Accurate and timely occupancy prediction has the potential to improve the efficiency of energy management systems in smart buildings. Occupancy prediction heavily depends on historical occupancy-related data collected from various sensor sources. Unfortunately, a major problem in that context is the difficulty to collect training data. This situation inspired us to rethink the occupancy prediction problem, proposing the use of an original principled approach based on occupancy estimation via interactive learning to collect the needed training data. Following that, the collected data, along with various features, were fed into several algorithms to predict future occupancy. This paper mainly proposes a weakly supervised occupancy prediction framework based on office sensor readings and occupancy estimations derived from an interactive learning approach. Two studies are the main emphasis of this paper. The first is the prediction of three occupancy states, referred to as discrete states: absence, presence of one occupant, and presence of more than one occupant. The purpose of the second study is to anticipate the future number of occupants, i.e., continuous states. Extensive simulations were run to demonstrate the merits of the proposed prediction framework's performance and to validate the interactive learning-based approach's ability to contribute to the achievement of effective occupancy prediction. The results reveal that LightGBM, a machine learning model, is a better fit for short-term predictions than known recursive neural networks when dealing with a limited dataset. For a 24 h window forecast, LightGBM improved accuracy from 38% to 50%, which is an excellent result for non-aggregated data (single office).


Keywords: deep learninginteractive learningmachine learningoccupancy predictiontime series


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/35590880/

DOI: 10.3390/s22093186