Search publications

Reset filters Search by keyword

No publications found.

 

The caleosin CLO7 and its role in the heterotrimeric G-protein signalling network

Authors: Brunetti SCArseneault MKMGulick PJ


Affiliations

1 Biology Department, Concordia University, 7141 Sherbrooke W. Montreal (Quebec) H4B 1R6, Canada.
2 Biology Department, Concordia University, 7141 Sherbrooke W. Montreal (Quebec) H4B 1R6, Canada. Electronic address: patrick.gulick@concordia.ca.

Description

The investigation of the caleosin CLO7 in relation to heterotrimeric G-protein signalling in Arabidopsis showed that the gene plays a role in seed germination and embryo viability. The caleosin CLO7 belongs to a multi-gene family of calcium-binding proteins which are characterized by single EF-hand motifs. Other members of the caleosin gene family have been shown to affect transpiration and seed germination as well as play a role in both abiotic and biotic stress responses. The proteins are associated with lipid droplets/oil bodies and some members of the gene family have been shown to have peroxygenase activity. Members of the gene family have also been shown to interact with the a subunit of the heterotrimeric G protein complex. In this study, we further expand on the diversity of physiological responses in which members of this gene family play regulatory roles. Utilizing BiFC and Y2H protein-protein interaction assays, CLO7 is identified as an interactor of the heterotrimeric G protein a subunit, GPA1. The full-length CLO7 is shown to interact with both the wild-type GPA1 and its constitutively active form, GPA1QL, at the plasma membrane. Point mutations to critical amino acids for calcium binding in the EF-hand of CLO7 indicate that the interaction with GPA1 is calcium-dependent and that the interaction with GPA1QL is enhanced by calcium. Protein-protein interaction assays also show that CLO7 interacts with Pirin1, a member of the cupin gene superfamily and a known downstream effector of GPA1, and this interaction is calcium-dependent. The N-terminal portion of CLO7 is responsible for these interactions. GFP-tagged CLO7 protein localizes to the endoplasmic reticulum (ER) and to lipid bodies. Characterization of the clo7 mutant line has shown that CLO7 is implicated in the abscisic acid (ABA) and mannitol-mediated inhibition of seed germination, with the clo7 mutant displaying higher germination rates in response to osmotic stress and ABA hormone treatment. These results provide insight into the role of CLO7 in seed germination in response to abiotic stress as well as its interaction with GPA1 and Pirin1. CLO7 also plays a role in embryo viability with the clo7gpa1 double mutant displaying embryo lethality, and therefore the double mutant cannot be recovered.


Keywords: CLO7CaleosinEmbryo lethalGerminationInteraction with GPA1


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/36334585/

DOI: 10.1016/j.jplph.2022.153841