Search publications

Reset filters Search by keyword

No publications found.

 

Multifaceted synergistic electron transfer mechanism for enhancing denitrification by clay minerals

Authors: Zhang YLu CChen ZSong YLi HHan YHou YGuo J


Affiliations

1 School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
2 College of Urban and Environmental sciences, Northwest University, Xuefu Avenue 1, Xian 710127, Shanxi, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China. Electronic address: lucaicai2010@163.com.
3 Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W, Montreal, Quebec, Canada.

Description

The performance and mechanism of denitrification enhanced by three clay minerals, montmorillonite (Mmt), illite and kaolinite, were first studied. Batch experiments indicated that clay minerals significantly enhanced denitrification at certain concentrations (0.1-1 g/L). The denitrification rate with 1 g/L Mmt was increased by 5.0-fold. The mechanism of clay minerals promoting denitrification was analyzed from three aspects: electron transfer characteristics, interfacial interaction and metabolism activity. Electrochemical tests showed that the clay minerals promoted electron transfer rate by improving current efficiency and electronic accommodation capacity. The biofilm formation on the clay minerals interface indicated that micro-domain catalytic phases were formed, which was beneficial to improve the nitrate reduction rate. In addition, nicotinamide adenine dinucleotide, nitrate reductase and nitrite reductase activities in Mmt-supplemented system were increased by 283.3%, 128.1% and 126.2%, respectively; and extracellular polymeric substance secretion was enhanced, indicating that the addition of clay minerals promoted microbial metabolic activity. Higher microbial diversity and enrichment of electroactive bacteria were observed in the Mmt-supplemented system. Based on the above exploration, the multifaceted synergistic mechanism was proposed to account for the enhanced denitrification performance on clay minerals. Overall, this study expanded understanding of the roles of clay minerals on denitrification and provided strategies for accelerating the biological transformation process.


Keywords: Clay mineralsDenitrificationInterfacial interactionelectron transfer


Links

PubMed: https://pubmed.ncbi.nlm.nih.gov/34915014/

DOI: 10.1016/j.scitotenv.2021.152222